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ABSTRACT 
 
In logistic regression, the demand for pseudo R2 
measures of fit is undeniable.  There are at least a 
half dozen such measures, with little consensus on 
which is preferable.  Two of them, both based on 
the maximum likelihood, are used in almost all 
statistical software systems.  The first, R2

1, has 
been implemented in SAS and SPSS.  The second, 
R2

2, (also known as McFadden’s R2, R2
MF , the 

deviance R2
DEV and the entropy R2

E) is 
implemented in STATA and SUDAAN as well as 
SPSS.  
 
Until recently these two measures have been 
considered independent.  We will show in our 
presentation, which is a sequel to our SUGI 25 
paper, that there exists a one-to-one 
correspondence between R2

1 and R2
2.  If we know 

one of them, we know the other.  The relationship 
between these measures of fit is required to 
understand which of them is preferred on a 
theoretical basis.  To make this choice we consider 
our ability to interpret the measure in a reasonable 
way, the measure’s dependence on the base rate as 
well as its degree of susceptibility to over-
dispersion.  We conclude that R2

2 should be 
regarded as the standard R2 measure. 
                  
 
INTRODUCTION 
 
R2 is probably the most popular measure of fit in 
statistical modeling.  The measure provides a 
simple and clear interpretation, takes values 
between 0 and 1, and becomes larger as the model 
“fits better”, in particular when we add more 
predictors.  R2 dominates in the SAS REG and 

GLM procedures.  Researchers like to use the 
R2 of the linear regression model and would 
like to have something similar to report in 
logistic regression. 
 
According to Hosmer and Lemeshow (2000, 
p. 167):  
 

“Unfortunately, low R2 values in logistic 
regression are the norm and this presents a 
problem when reporting their values to an 
audience accustomed to seeing linear regression 
values…  Thus we do not recommend routine 
publishing of R2 values from fitted logistic 
regression models.”  

 
We disagree with this opinion.  It seems to us 
that the question of interpretation of R2 is 
more important than the range of its values.  
It is much more important to know what we 
measure rather than to have the range of R2 
values similar to those of linear regression.  
We should make our choice of R2 in logistic 
regression based on the intuitively meaningful 
interpretation.  The problem of making this 
choice is nontrivial. 
 
 
R2 AVAILABLE IN SAS PROC 
LOGISTIC: R2

SAS  
 
R2

SAS can be defined by the following 
equation: 
 
   R2

SAS = 1 – exp{2[logL(M) – logL(0)] / n}     (1) 
 
where logL(M) and logL(0) are the 
maximized log likelihood for the fitted 
(current) model and the “null” model 
containing only the intercept term, and n is 
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the sample size.  This definition is equivalent to 
that used in SAS/STAT Software Changes and 
Enhancements Through Release 6.11.  (See also 
Maddala (1983), Cox and Snell (1989), 
Nagelkerke (1991), and Mittlbock  and Schemper 
(1996)).  The defined R2

SAS   cannot attain the 
value of 1 even if the model fits perfectly and 
residuals are zero (Mittlbock and Schemper 
(1996)).  Nagelkerke (1991) proposed the 
following adjustment: 
 
   Adj-R2

SAS = R2
SAS / [1 – exp(2 logL(0) / n) ]     (2) 

 
In SAS this value is labeled  “Max-rescaled 
RSquare”.  Although Adj-R2

SAS can reach the 
maximum value of 1, the correction appears 
cosmetic and does not guarantee that intermediate 
values of Adj-R2

SAS  are adequate (see Mittlbock and 
Schemper (1996),  p.1991). 
 
An even more serious disadvantage is the lack of a 
reasonable interpretation.  Unlike the linear model, 
R2 

SAS cannot be interpreted as a proportion of 
variation in the dependent variable that is 
explained by the predictors.  According to 
Mittlbock and Schemper (1999) the values of 
R2

SAS and Adj-R2
SAS cannot be interpreted in any 

useful way.  We cannot but agree with these 
authors. 
 
 
THE PROPOSED R2 MEASURES: R2

DEV , R2
E 

AND R2
MF 

 
The deviance R2 can be defined as follows:  
 

       R2
DEV=[logL(M)-logL(0)]/[logL(S)-logL(0)]     (3) 

 
where logL(M), logL(0), and logL(S) are the 
maximized log likelihoods for the currently fitted, 
“null”, and saturated models correspondingly 
(Hosmer and Lemeshow (2000), Agresti (1990), 
Menard (1995), Mittlbock and Schemper (1999) 
and Menard (2000)).  If we work with single-trial 
syntax or individual-level data, then the saturated 
model has a dummy variable for each observation.  

Thus logL(S) =  0, and R2
DEV simplifies to 

McFadden  R2 (R2
MF

 ).  In case of events / 
trials syntax or grouped-level data, these two 
measures are different.  For simplicity, we will 
consider mostly the individual-level data case, 
in which R2

DEV = R2
E = R2

MF. 
 
R2

MF can be interpreted in two ways: first as 
proportional reduction in the  - 2log-likelihood 
statistic (Menard (2000)).  This interpretation 
is intuitively meaningful and fits the spirit of 
the maximum likelihood principle, the 
statistical basis for logistic regression.  In 
addition, the formula 
 
   R2

MF  = 1 - logL(M)/logL(0)     (4) 

is parallel to the formula for the ordinary least 
squares R2 (R2

OLS) as shown in (Menard 
(2000)).  
 
Another interpretation of R2

MF and also R2
DEV 

and R2
E is in terms of the information: they can 

be interpreted as the ratio of the estimated 
information gain when using the current model 
M in comparison with the null model to the 
estimate of the information potentially 
recoverable by including all possible 
explanatory variables (see Kent (1983) and 
Hastie (1987)).  Both interpretations of R2

MF 
are intuitively reasonable. 
  
 
R2

SAS AND R2
DEV:  

FUNCTIONAL RELATIONSHIP 
 
As far as we know, the researchers working 
with logistic regression treat R2

SAS and R2
DEV 

as independent R2
 measures.  However, there 

exists a simple functional relationship between 
them.  From (1) and (3), it is not difficult to 
show that  
 
   R2

SAS=1 - exp{-R2
DEV  2[logL(S) - logL(0)]/n}     (5) 

  
If we use the notation  
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   T = 2[logL(S) - logL(0)]/n,  
 
formula (5) becomes  
 
   R2

SAS=1 – exp(-R2
DEV * T )     (5a) 

 
If logL(S) = 0 (a single-trial case), then  
 
   R2

SAS=1 – exp(-R2
MF * T )     (5b) 

 
and T = - 2logL(0)/n.  We will consider only the 
single-trial case with logL(S) = 0 in the rest of the 
paper. 
 
The maximized log-likelihood for the null model 
can be written as follows 
 
   LogL(0) = n[YlogY + (1 – Y)log(1 – Y)]     (6) 
 
and as a result  
 
   T = -2[YlogY + (1 – Y)log(1 – Y)]                (7) 
 
where Y = (∑ yi) / n and yi denotes the binary 
outcome (see, for example, Agresti (1990), p. 110). 
 Y is known as the base rate (Menard (2000)).  
From (5b) and (7) we can arrive at a number of 
important conclusions. 
 
1) We see how and why R2

SAS so strongly depends 
on the base rate Y.  As noted in Menard (2000), 
R2

MF and Y are almost un-correlated 
(corr(R2

MF,Y) = 0.002).  At the same time, 
Menard (2000) reported an extremely high 
empirical correlation between R2

SAS and Y 
(corr(R2

SAS ,Y) = 0.982).  (5b) and (7) provide 
us with a theoretical explanation of this obvious 
difference. 

 
2) It is interesting that using (5b) we can calculate 

theoretically the values of R2
SAS if R2

MF and 
logL(0) (or the base rate) are known.  And vise 
versa, if we know R2

SAS and logL(0), we can 
calculate the values of R2

MF.  Applying formula 
(5b) to Table 1 in Menard (2000) with R2

MF and 

the base rate as known quantities and R2
SAS 

to be calculated, we find an excellent 
agreement between calculated (theoretical) 
and empirical values of R2

SAS from Table 
1.  

 
 
3) From (5b) it can be seen that T is a key 

parameter in the relationship between 
R2

SAS and R2
MF .  For sufficiently small 

values of R2
MF, which are typical according 

to Hosmer and Lemeshow (2000), p. 167, 
formula (5b) can be linearized as follows: 

  
          R2

SAS ≅ T * R2
MF      (8) 

 
We would like to find the range of possible 
values of T, the key parameter in (5b) and (8).  
A priori, we can think that 0 < T < ∞.  
Actually, this interval is much smaller.  Note 
that parameter T as a function of base rate Y 
on the interval [0,1] is symmetrical with 
respect to  
Y = .5.  It is equal to 0 at the ends Y = 0 and Y 
= 1, increases from 0 to 2ln2 on [0,1/2] and 
then decreases from 2ln2 to 0 on [1/2,1].  Thus,  
0 ≤ T ≤ 2ln2 ≅1.3863.  If  1 < T ≤ 2ln2 which 
corresponds to .2 < Y < .8 then it can be shown 
that for small (enough) values of both R2 
measures we have R2

SAS > R2
MF.  Otherwise, 

R2
SAS and R2

MF  “switch” positions: R2
SAS < 

R2
MF.  Note that as the upper limit for T is a 

rather small number of 2ln2 ≅1.3863, R2
SAS 

and R2
MF are of similar magnitude even if 

R2
SAS > R2

MF.  This theoretical conclusion can 
be confirmed by empirical data from Table 1 in 
Menard (2000), for example: 
 
   Y = 0.4,     R2

SAS = 0.291, R2
MF = 0.255  

   Y = 0.495, R2
SAS = 0.254, R2

MF = 0.211  
 
and by the data from Mittlbock and Schemper  
   (1999): 
 
   Y = 0.4286,      R2

SAS = 0.4611, R2
MF = 
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0.4527  
   Y = 0.5483,      R2

SAS = 0.1051, R2
MF = 0.0806      

                                   
On the other hand, if T ≤ 1 then R2

SAS < R2
MF      

and if  T is small (which is equivalent to small base 
rate Y) then formulas (5b) and (8) show that R2

MF 
can be substantially greater than R2

SAS.  The data 
from Table 1 (Menard (2000)) confirm our 
theoretical conclusion 
 
   Y = 0.010,      R2

SAS = 0.020, R2
MF = 0.187  

   Y = 0.021,      R2
SAS = 0.061, R2

MF = 0.312. 
 
Thus for 0 < Y < .2 or .8 < Y < 1, R2

SAS gives 
smaller estimates of the performance of the model. 
 
 
DOES R2

MF ASSESS GOODNESS-OF-FIT? 
 
Hosmer and Lemeshow (2000, p. 164) note that R2 

measures in logistic regression are based on 
comparisons of the current fitted model M to the 
null model and “ as a result they do not assess 
goodness-of-fit”.  This remark is true for R2

SAS.  
But R2

MF is different because it compares the 
current model M with the saturated one and 
addresses the question “Does there exist a model 
which is substantially better than M?”  Thus, R2

MF 
could be treated as a goodness-of-fit measure. 
 
 
SUMMARY OF COMPARISONS OF R2

SAS      
AND R2

MF 
 
Since we know that there exists a one-to-one 
functional relationship between R2

SAS and R2
MF, it 

is natural to use only one of the measures. 
To make the right choice we perform the following 
comparisons. 
 
Interpretation.  R2

SAS has no satisfactory 
interpretation.  At the same time, R2

MF (or R2
DEV 

and R2
E) has at least two useful interpretations. 

 
Base rate.  R2

SAS is strongly dependent on the base 

rate Y.  Empirical results in Menard (2000) 
show that corr(R2

SAS,Y) = .910.  At the same 
time, the correlation between R2

MF (or R2
DEV or 

R2
E) and Y is almost negligible (.002). 

 
Is the value of 1 attainable?  R2

SAS can never 
attain the value of 1.  That is why adj-R2

SAS is 
introduced, a measure that is even less 
interpretable than R2

SAS.  R2
MF (or R2

DEV or 
R2

E) attains the value of 1 for a saturated 
model. 
 
Overdispersion.  It is easy to see that R2

SAS is 
susceptible to overdispersion and R2

MF is not. 
 
Summarizing these results, we conclude that 
R2

MF is undoubtedly superior to R2
SAS and 

should be used instead of R2
SAS in the SAS 

LOGISTIC procedure. 
 
 
ADJUSTING FOR THE NUMBER OF  
PREDICTORS 
 
Even after considering all the advantages 
R2

MF enjoys over its competitor R2
SAS, that 

measure is of rather limited use in model 
selection.  It can be used only for comparison 
of models with the same number of 
explanatory variables.  The reason for this is 
that R2

MF always increases with any 
additional predictor.  This is a common 
feature of all well-behaved R2 measures.  To 
make R2

MF more useful in model selection (in 
particular, in comparing nested models), we 
have to adjust it by penalizing for model 
complexity -- the number of covariates in the 
model.  We can do this in several ways: by 
using the adjustment as in R2

 for linear 
regression, by using the ideas behind 
information criteria (AIC and BIC), or by 
combining both previous approaches 
(Shtatland et al (2000)).  We will mention 
here only the Akaike’s type adjustment 
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   Adj-R2
MF  = 1-(logL(M) – k – 1) /(logL(0) – 1)   (9) 

 
where k is the number of  covariates without an 
intercept.  About this adjustment see (Mittlbock 
and Schemper (1996) and Menard (1995, p. 22)).  
About Harrell’s adjustment see ( Shtatland et al 
(2000)).  Adjustment (9) works exactly as 
Akaike’s Information Criterion (AIC), the most 
popular criterion in model selection.  
Nevertheless, we prefer to work with Adj-R2

MF 
rather than AIC.  The reason for this is that Akaike 
Information Criterion, being the estimate of the 
expected log-likelihood, takes rather arbitrary 
values: from very large positive to very large 
negative, which are hard to interpret.  At the same 
time, in most cases adjustment (9) takes values 
between 0 and 1, which are far easier to interpret.  
This is why we suggest using Adj-R2

MF at least as 
a supplement to AIC,  if not instead of AIC. 
 
 
CONCLUSION 
 
In this paper, we have shown that two popular R2 
measures, R2

SAS and R2
MF, are not independent 

statistics.  Instead, there exists a one-to-one 
correspondence between them.  To avoid this 
redundancy, we should work either with R2

MF or R2
SAS. 

 Thorough comparative analysis shows that R2
MF has a 

number of important advantages over R2
SAS and 

undoubtedly should be chosen as the standard R2 
measure in PROC LOGISTIC.  To facilitate using R2

MF 
in model selection, we propose to adjust it for the 
number of parameters.  We suggest that the adj-R2

MF 
has some important advantages over the popular 
information criterion AIC in terms of interpretability.  
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